7 research outputs found

    Model-based segmentation and classification of trajectories (Extended abstract)

    Get PDF
    We present efficient algorithms for segmenting and classifying a trajectory based on a parameterized movement model like the Brownian bridge movement model. Segmentation is the problem of subdividing a trajectory into parts such that each art is homogeneous in its movement characteristics. We formalize this using the likelihood of the model parameter. We consider the case where a discrete set of m parameter values is given and present an algorithm to compute an optimal segmentation with respect to an information criterion in O(nm) time for a trajectory with n sampling points. Classification is the problem of assigning trajectories to classes. We present an algorithm for discrete classification given a set of trajectories. Our algorithm computes the optimal classification with respect to an information criterion in O(m^2 + mk(log m + log k)) time for m parameter values and k trajectories, assuming bitonic likelihood functions

    Distribution-sensitive construction of the greedy spanner

    No full text
    The greedy spanner is the highest quality geometric spanner (in e.g. edge count and weight, both in theory and practice) known to be computable in polynomial time. Unfortunately, all known algorithms for computing it on n points take O(n 2) time, limiting its use on large data sets. We observe that for many point sets, the greedy spanner has many ‘short’ edges that can be determined locally and usually quickly, and few or no ‘long’ edges that can usually be determined quickly using local information and the well-separated pair decomposition. We give experimental results showing large to massive performance increases over the state-of-the-art on nearly all tests and real-life data sets. On the theoretical side we prove a near-linear expected time bound on uniform point sets and a near-quadratic worst-case bound. Our bound for point sets drawn uniformly and independently at random in a square follows from a local characterization of t-spanners we give on such point sets: we give a geometric property that holds with high probability on such point sets. This property implies that if an edge set on these points has t-paths between pairs of points ‘close’ to each other, then it has t-paths between all pairs of points. This characterization gives a O(n log2 n log2 logn) expected time bound on our greedy spanner algorithm, making it the first subquadratic time algorithm for this problem on any interesting class of points. We also use this characterization to give a O((n¿+¿|E|) log2 n loglogn) expected time algorithm on uniformly distributed points that determines if E is a t-spanner, making it the first subquadratic time algorithm for this problem that does not make assumptions on E

    Computing the greedy spanner in linear space

    Get PDF
    The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner on n points use O(n^2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a linear-space algorithm that computes the same spanner for points in R^d running in O(n^2 log^2n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented. Keywords: Geometric spanner; Dilation; Stretch factor; Greedy algorithm; Computational geometr

    Distribution-sensitive construction of the greedy spanner

    Get PDF
    The greedy spanner is the highest quality geometric spanner (in e.g. edge count and weight, both in theory and practice) known to be computable in polynomial time. Unfortunately, all known algorithms for computing it on n points take Ω(n2)\varOmega (n^2) time, limiting its applicability on large data sets. We propose a novel algorithm design which uses the observation that for many point sets, the greedy spanner has many ‘short’ edges that can be determined locally and usually quickly. To find the usually few remaining ‘long’ edges, we use a combination of already determined local information and the well-separated pair decomposition. We give experimental results showing large to massive performance increases over the state-of-the-art on nearly all tests and real-life data sets. On the theoretical side we prove a near-linear expected time bound on uniform point sets and a near-quadratic worst-case bound. Our bound for point sets drawn uniformly and independently at random in a square follows from a local characterization of t-spanners we give on such point sets. We give a geometric property that holds with high probability, which in turn implies that if an edge set on these points has t-paths between pairs of points ‘close’ to each other, then it has t-paths between all pairs of points. This characterization gives an O(nlog2nlog2logn)O(n \log ^2 n \log ^2 \log n) expected time bound on our greedy spanner algorithm, making it the first subquadratic time algorithm for this problem on any interesting class of points. We also use this characterization to give an O((n+E)log2nloglogn)O((n + |E|) \log ^2 n \log \log n) expected time algorithm on uniformly distributed points that determines whether E is a t-spanner, making it the first subquadratic time algorithm for this problem that does not make assumptions on E

    Distribution-sensitive construction of the greedy spanner

    No full text
    The greedy spanner is the highest quality geometric spanner (in e.g. edge count and weight, both in theory and practice) known to be computable in polynomial time. Unfortunately, all known algorithms for computing it on n points take O(n 2) time, limiting its use on large data sets. We observe that for many point sets, the greedy spanner has many ‘short’ edges that can be determined locally and usually quickly, and few or no ‘long’ edges that can usually be determined quickly using local information and the well-separated pair decomposition. We give experimental results showing large to massive performance increases over the state-of-the-art on nearly all tests and real-life data sets. On the theoretical side we prove a near-linear expected time bound on uniform point sets and a near-quadratic worst-case bound. Our bound for point sets drawn uniformly and independently at random in a square follows from a local characterization of t-spanners we give on such point sets: we give a geometric property that holds with high probability on such point sets. This property implies that if an edge set on these points has t-paths between pairs of points ‘close’ to each other, then it has t-paths between all pairs of points. This characterization gives a O(n log2 n log2 logn) expected time bound on our greedy spanner algorithm, making it the first subquadratic time algorithm for this problem on any interesting class of points. We also use this characterization to give a O((n¿+¿|E|) log2 n loglogn) expected time algorithm on uniformly distributed points that determines if E is a t-spanner, making it the first subquadratic time algorithm for this problem that does not make assumptions on E

    Computing the greedy spanner in linear space

    No full text
    The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner of n points use O(n2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in Rd running in O(n2 log2n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented
    corecore